
Additional Content for Use with Classical Fortran

The section numbers in this table show approximately where each addition will go if it is

ever included in a Third Edition of the book; + means “between this section and the next

at its level, adjusting subsequent section numbers to make room.”

new § title contents

6.6.1+ Real-to-Integer Functions truncating and rounding real values to integer

9.6+ Undoing End-of-File appending to a file; reattaching the keyboard

18.4+ Extra-Precision Accumulation computing x
⊤
y more precisely

18.5+ Generating Pseudorandom Numbers a generalized shift register algorithm

1

6.6.1+ Real-to-Integer Functions

I described in §4.4 how IFIX can be used to find the integer closest to a positive real value
(top panel on next page). Often it is necessary to find the integer that is related to a real
value in one of the slightly different ways illustrated below. Modern Fortran has built-in
functions for ceiling and floor (see §17.1.3) and for the integer nearest a real value.

K

4

2

0

−2

−4

X

−4 −2 0 2 4

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

•

•

•

•

•

•

•

•

•

K = ICEIL(X) = lowest integer not less than X

FUNCTION ICEIL(X)

REAL*8 X

ICEIL=IFIX(SNGL(X))

IF(DFLOAT(ICEIL).LT.X) ICEIL=ICEIL+1

RETURN

END

K

4

2

0

−2

−4

X

−4 −2 0 2 4

◦

◦

◦

◦

◦

•

•

•

•

•

◦

◦

◦

◦

◦

•

•

•

•

•
K = IFIX(SNGL(X)) = truncate fractional part

K

4

2

0

−2

−4

X

−4 −2 0 2 4

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

•

•

•

•

•

•

•

•

•

K = IFLOR(X) = highest integer not more than X

FUNCTION IFLOR(X)

REAL*8 X

IFLOR=IFIX(SNGL(X))

IF(DFLOAT(IFLOR).GT.X) IFLOR=IFLOR-1

RETURN

END

2

K

4

2

0

−2

−4

X

−4 −2 0 2 4

◦

◦

◦

◦

◦

•

•

•

•

•

◦

◦

◦

◦

◦

•

•

•

•

•
K = IFIX(SNGL(X)+0.5) = round positive values

K

4

2

0

−2

−4

X

−4 −2 0 2 4

◦

◦

◦

◦

◦

•

•

•

•

•

◦

◦

◦

◦

◦

•

•

•

•

•

K = IROUND(X) = integer closest to X

FUNCTION IROUND(X)

REAL*8 X

IF(R.GT.0.D0) THEN

IROUND=IFIX(SNGL(R)+0.5)

ELSE

IROUND=IFIX(SNGL(R)-0.5)

ENDIF

RETURN

END

K

4

2

0

−2

−4

X

−4 −2 0 2 4

◦

◦

◦

◦

◦

•

•

•

•

•

◦

◦

◦

◦

◦

•

•

•

•

•
K = IFIX(SNGL(X)-0.5) = round negative values

Copyright c© 2024 Michael Kupferschmid, all rights reserved.

This supplementary textbook Section is licensed under cc-by 4.0.

Anyone who complies with the terms specified in

https://creativecommons.org/licenses/by/4.0/legalcode.txt

may use the work in the ways therein permitted.

1

9.6+ Undoing End-of-File

When READ sees a ˆD or encounters the end of a disk file, the I/O library marks that con-
dition by setting a flag. This Section discusses two unusual situations in which persistence
of that flag is inconvenient, and shows ways in which it can be reset.

Appending to a file. Some I/O library implementations provide one of these options

OPEN(UNIT=unit, FILE=file, POSITION=’APPEND’)

OPEN(UNIT=unit, FILE=file, ACCESS=’APPEND’)

for positioning the line pointer at the end of a file. If neither option is supported, I suggested
in §9.6.0 reading the file until its end is reached and then writing more lines to it. That
approach fails in implementations, including gfortran, that do not permit the file to be
written to or read from after the end-of-file flag has been set. In that case we can resort to
the strategy embodied in the APPEND routine listed below.

1 SUBROUTINE APPEND(NUNIT)

2 C This routine positions the line pointer at the end of the file

3 C attached to unit NUNIT so that it can be appended to, without

4 C leaving the file closed so that it cannot be written.

5 C

6 C variable meaning

7 C -------- -------

8 C I index on the lines in the file

9 C LNUM number of line just read

10 C NUNIT number of logical I/O unit attached to the file

11 C

12 C --

13 C

14 C count the lines in the file

15 REWIND(UNIT=NUNIT)

16 LNUM=0

17 2 READ(NUNIT,*,END=1)

18 LNUM=LNUM+1

19 GO TO 2

20 C

21 C reread those lines without setting the EOF flag

22 1 REWIND(UNIT=NUNIT)

23 DO 3 I=1,LNUM

24 READ(NUNIT,*)

25 3 CONTINUE

26 RETURN

27 END

This routine 14-19 reads the file once to its end, counting its lines. Then 21-25 it reads
that number of lines from the file again, stopping before the end-of-file flag is set. This
positions the line pointer to the next line after those already present, so that more lines can
be written into the file.

Reattaching unit 5 to the keyboard. Recall from §9.1 that logical unit number 5
is attached by default to the keyboard, which Unix refers to by a device name such as

2

/dev/pts/0. Sometimes it is desirable to take the END= exit from READ when an interac-
tive user enters ˆD, perform some action, and eventually resume reading input from the
keyboard. After the ˆD is received standard-in remains attached to the device, but if the
end-of-file flag is persistent attempts to read from the keyboard elicit a Fortran runtime
error message such as Sequential READ not allowed after EOF. To re-enable unit 5 for
input from the keyboard after doing whatever is appropriate in response to the end-of-file,
it is necessary to close and reopen the unit. The UNCTLD routine listed on the next page
finds the device name of the keyboard, closes the unit, and reopens it on that device.
The code begins 29 by using INQUIRE to find the name of the file or device that is

attached to unit 5.
If 30-34 the name begins with the string stdin then unit 5 is reading from a redirection

(see §9.4) or a Unix pipe (see §14.1.0), in which case the end-of-file cannot be rescinded;
the routine closes the unit and returns with RC=3.
If 36-40 the name is blank then the unit is already closed. We have no way of knowing

what it had been attached to, so the routine returns with RC=2.
If 41-46 the name does not begin with the string /dev/ then unit 5 is attached to a file

rather than to the keyboard, and in this situation also the end-of-file cannot be rescinded;
the routine closes the unit and returns with RC=1.
Otherwise 49-52 the routine assumes that unit 5 is attached to the keyboard, so it can

clear the end-of-file flag by closing the unit and reopening it on the device to which it was
previously attached. To signal this normal outcome the routine returns RC=0.

Copyright c© 2024 Michael Kupferschmid, all rights reserved.

This supplementary textbook Section is licensed under cc-by 4.0.

Anyone who complies with the terms specified in

https://creativecommons.org/licenses/by/4.0/legalcode.txt

may use the work in the ways therein permitted.

3

1 C

2 SUBROUTINE UNCTLD(RC)

3 C This routine reestablishes unit 5 as the keyboard after EOF.

4 C

5 C RC meaning

6 C -- -------

7 C 0 all went well; unit 5 was closed and reopened

8 C 1 unit 5 was attached to a file; unit 5 was closed

9 C 2 unit 5 was already closed; nothing was done

10 C 3 unit 5 was a redirect or pipe target; unit 5 was closed

11 C

12 C variable meaning

13 C -------- -------

14 C FYLE the file or device name to which unit 5 is attached

15 C NAM the first 5 characters of FYLE

16 C RC return code; see table above

17 C

18 C formal parameter

19 INTEGER*4 RC

20 C

21 C overlay to extract the first 5 characters of FYLE

22 CHARACTER*24 FYLE

23 CHARACTER*5 NAM

24 EQUIVALENCE(FYLE,NAM)

25 C

26 C --

27 C

28 C where is unit 5 attached now?

29 INQUIRE(UNIT=5,NAME=FYLE)

30 IF(NAM.EQ.’stdin’) THEN

31 C unit 5 is the target of a redirect or pipe

32 CLOSE(5)

33 RC=3

34 RETURN

35 ENDIF

36 IF(NAM.EQ.’ ’) THEN

37 C unit 5 is closed

38 RC=2

39 RETURN

40 ENDIF

41 IF(NAM.NE.’/dev/’) THEN

42 C unit 5 is attached to a file

43 CLOSE(5)

44 RC=1

45 RETURN

46 ENDIF

47 C

48 C unit 5 is attached to some /dev, presumably the keyboard

49 CLOSE(5)

50 OPEN(UNIT=5,FILE=FYLE)

51 RC=0

52 RETURN

53 END

1

18.4+ Extra-Precision Accumulation

A fundamental operation in numerical linear algebra, first mentioned in §6.3, is finding the
dot product of two vectors x and y as the following sum.

x
⊤

y =
n∑

j=1

xjyj .

This calculation is likely to be imprecise because of rounding error in the multiplications
and cancellation error when small terms are added into a large sum, as discussed in §4.3.
I mentioned there that cancellation error can be reduced by adding up the terms in as-
cending order of absolute value, but that is seldom done in finding the dot product because
precomputing and sorting the products xjyj uses significant extra memory and CPU time.
Nonetheless we often want a precise answer, so it is standard practice to instead accumulate
the sum at extra precision. For example, if the basic calculation uses REAL*4 numbers
the dot product might be coded using REAL*8 arithmetic like this.

REAL*4 X(100),Y(100),DOT

REAL*8 Z

:

Z=0.D0

DO 1 J=1,100

Z=Z+DBLE(X(J))*DBLE(Y(J))

1 CONTINUE

DOT=SNGL(Z)

:

Here the DBLE function (see §4.4) is used to cast X(J) and Y(J) to REAL*8 for the multipli-
cation, and SNGL is used to convert the result Z back to REAL*4. If your compiler supports
the REAL*16 data type, you can modify this code to compute accurate REAL*8 dot products.
But what if your compiler does not recognize REAL*16, or it does but the basic calculation
already uses REAL*16 and you want more precision than that? There is in fact a clever
way (see [201], [202 §4.4], and [9, §4.3.3]) to perform the dot product calculation at extra
precision with variables of the same precision as those used to store the vectors, and with
only a small penalty in memory and processor time.
Multiplying two n-bit binary fractions a and b yields a product ab that is 2n bits long,

as in this example with n = 4.

• 1 1 1 0 = a
× • 1 1 0 1 = b

1 1 1 0

0 0 0 0

1 1 1 0

1 1 1 0

• 1 0 1 1 0 1 1 0 = ab

To store this result as a 4-bit binary fraction we must discard the least-significant 4 of its
fraction bits, or half of the bits that make up the answer! These bits are of course much
less important than the ones we keep, but neglecting them does introduce some error. The
right answer is .101101102 = 1

2
+ 1

8
+ 1

16
+ 1

64
+ 1

128
= 0.710937510 but the result we keep

is .10112 = 0.687510.

2

Instead suppose we split a into two parts so that a = ah + at, where ah is the value
of the high or most-significant n/2 bit positions of a and at is the value of the trailing or
least-significant n/2 bit positions. Then, if ah and at are stored as floating-point binary
fractions having n significand bits, the rightmost n/2 bits in each of them will be zero.
Splitting b will yield parts bh and bt that similarly have zeros in their n/2 least-significant
bit positions. Then we can find the product as

ab = (ah + at)(bh + bt) = ahbh + ahbt + atbh + atbt

where each partial product is exactly represented by a floating-point binary fraction of n
bits and can therefore be stored without any loss of precision. For our n = 4 example this
is how the process works.

a = .1110 = .1100× 20 + .1000× 2−2 = ah + at

b = .1101 = .1100× 20 + .0100× 2−2 = bh + bt

ahbh = (.1100× 20)× (.1100× 20) = .1001× 20

ahbt = (.1100× 20)× (.0100× 2−2) = .0011× 2−2

atbh = (.1000× 2−2)× (.1100× 20) = .0110× 2−2

atbt = (.1000× 2−2)× (.0100× 2−2) = .0010× 2−4

Each of the parts has n/2 = 2 trailing zeros, and each partial product just fits in n = 4
bits. If we align binary points and add partial products we get the same answer as before.

•10010000 = ahbh
•00001100 = ahbt
•00011000 = atbh
•00000010 = atbt

•10110110 = ab

To avoid losing the least-significant half of this result, we could accumulate the sum of the
partial products into a two-element vector of 4-bit floating-point binary fractions, ending
up with ab = [(.1011×20), (.0110×2−4)]. Once a whole dot product has been accumulated,
the less-significant parts of all the partial products will have added up instead of being lost
through cancellation, and we can obtain an accurate n-bit answer by adding the two n-bit
vector elements that we used to store the 2n-bit sum.
The MPYACC subroutine listed on the next page uses the splitting idea to perform a single

multiplication of the scalar X times the scalar Y, calling ADDACC to add each partial product
to the two-element accumulator XYSUM. Unlike a and b in the discussion above, X and Y

are 21 REAL*8 variables. According to §4.2 they have a sign bit and 11 exponent bits
preceding an implied “1.” and 52 bits of binary fraction, so in splitting them it is necessary
to preserve the sign and exponent bits. To split X we begin 35 by copying it into XH, which

is 25-26 overlaid by the two-element INTEGER*4 vector IXH. On a little-endian processor
the least-significant word of X comes first in memory (see §4.8) so another name for it is
IXH(1). This fullword we bitwise-and (see §4.6.3) with HMASK 37 which is initialized 27

at compile time to the bit pattern 11111100000000000000000000000000. The resulting
value of XH is thus X with its least-significant 26 (= n/2 in the discussion above) bits set
to zero. We want XH and XT to add up to X, so 38 XT is just X minus the XH we found.

The same process is used 39-42 to split Y into YH and YT. The parts XH, XT, YH, and YT,
are REAL*8 so they have 52 fraction bits, but of these the trailing 26 are zero. Finally the
code 45-52 computes the four 52-bit partial products (in order from smallest to largest)
and adds each to the extra-precision accumulator.

3

1 SUBROUTINE MPYACC(X,Y, XYSUM)

2 C This routine accumulates XYSUM=XYSUM+X*Y at extra precision.

3 C

4 C variable meaning

5 C -------- -------

6 C ADDACC routine adds to an extra-precision accumulator

7 C HMASK deletes the 26 least-significant fraction bits

8 C IAND Fortran function for bitwise logical AND

9 C IXH XH as 2 fullwords

10 C IYH YH as 2 fullwords

11 C P a partial product

12 C X first number in product

13 C XH split of X containing its high 26 fraction bits

14 C XT split of X containing value of trailing 26 bits

15 C XYSUM extra-precision accumulator

16 C Y second number in product

17 C YH split of Y containing its high 26 fraction bits

18 C YT split of Y containing value of trailing 26 bits

19 C

20 C formal parameters

21 REAL*8 X,Y,XYSUM(2)

22 C

23 C prepare to split X and Y

24 REAL*8 XH,XT,YH,YT

25 INTEGER*4 IXH(2),IYH(2)

26 EQUIVALENCE(XH,IXH),(YH,IYH)

27 INTEGER*4 HMASK/Z’FC000000’/

28 C

29 C prepare to compute the partial products

30 REAL*8 P

31 C

32 C --

33 C

34 C split X and Y into parts having 26 trailing fraction bits zero

35 XH=X

36 C this assumes the processor is little-endian

37 IXH(1)=IAND(IXH(1),HMASK)

38 XT=X-XH

39 YH=Y

40 C this assumes the processor is little-endian

41 IYH(1)=IAND(IYH(1),HMASK)

42 YT=Y-YH

43 C

44 C add the 52-fraction-bit exact partial products to accumulator

45 P=XT*YT

46 CALL ADDACC(P,XYSUM)

47 P=XT*YH

48 CALL ADDACC(P,XYSUM)

49 P=XH*YT

50 CALL ADDACC(P,XYSUM)

51 P=XH*YH

52 CALL ADDACC(P,XYSUM)

53 RETURN

54 END

4

The additions are accomplished by the ADDACC subroutine, which is listed on the next
page. ADDACC begins 24-30 by putting the larger of P and XYSUM(1) in U and the smaller in

V. This is to minimize cancellation error in the calculation 36 of U-Z (if U is close to Z=U+V

then little or no shifting will be needed to align the binary points in finding U-Z). Then 33

we find Z=U+V. Here some of the less-significant fraction bits of V are probably lost because V
must be shifted to align its binary point with that of U. How much error does that introduce?
The difference U-Z should be exactly -V, but because of cancellation it will differ from -V by
the error we seek. This is calculated 36 as ZZ. To that we add 39 the current contents of
the least-significant doubleword of the accumulator. If the least-significant doubleword has
grown big enough to be noticed if we added it to the most-significant doubleword, we want
to move that much of it there. So the most-significant doubleword of the accumulator then
becomes 42 the imprecise sum plus the correction to the sum plus the least significant

doubleword of the accumulator. Finally 45 we replace the least-significant doubleword of
the accumulator with the (small) amount that is necessary to make XYSUM(1)+XYSUM(2)

equal to the corrected sum Z+ZZ. The complicated process just described has the effect of
adding P to XYSUM at 2×52 = 104 bits of precision, which is almost the 112 bits of precision
we would get if we were able to use REAL*16 arithmetic.

5

1 SUBROUTINE ADDACC(P, XYSUM)

2 C This routine adds P to the extra-precision accumulator XYSUM.

3 C It must be compiled with optimization turned off.

4 C

5 C variable meaning

6 C -------- -------

7 C DABS Fortran function returns |REAL*8|

8 C P quantity to be added to the accumulator

9 C U the larger in absolute value of P and XYSUM

10 C V the smaller in absolute value of P and XYSUM

11 C XYSUM the accumulator

12 C Z most significant part of sum

13 C ZZ least significant part of sum

14 C

15 C formal parameters

16 REAL*8 P,XYSUM(2)

17 C

18 C local variables

19 REAL*8 U,V,Z,ZZ

20 C

21 C --

22 C

23 C put the larger quantity in U and the smaller in V

24 IF(DABS(XYSUM(1)) .LT. DABS(P)) THEN

25 U=P

26 V=XYSUM(1)

27 ELSE

28 U=XYSUM(1)

29 V=P

30 ENDIF

31 C

32 C find the sum, imprecisely

33 Z=U+V

34 C

35 C compute the error that was made by rounding U+V to REAL*8

36 ZZ=(U-Z)+V

37 C

38 C add to it the least significant part of the accumulator

39 ZZ=ZZ+XYSUM(2)

40 C

41 C that might be enough to increase the most significant part

42 XYSUM(1)=Z+ZZ

43 C

44 C make the least significant part of accumulator what is left

45 XYSUM(2)=(Z-XYSUM(1))+ZZ

46 C

47 RETURN

48 END

6

The DDOTQ function listed on the next page uses MPYACC to compute a dot product using
extra-precision accumulation. After doing some sanity-checking 23-24 it initializes the

accumulator XYSUM to zeros 27-28 . Instead of the multiply-and-add loop we had before

we now have 29-31 a loop of calls to MPYACC. On each invocation that routine computes
X(J)× Y(J) and adds it to the accumulator as described above. When the loop is finished
we find the dot product 34 by adding together the most- and least-significant doublewords
of the accumulator.
The program below compares DDOTQ to DDOT for finding a troublesome dot product.

REAL*8 X(101),Y(101),DDOT,ANS,DDOTQ,ANSQ

X(1)=1.D+08

Y(1)=1.D+08

DO 1 J=2,101

X(J)=DFLOAT(J-1)

Y(J)=1.D0/DFLOAT(J-1)

1 CONTINUE

ANS=DDOT(X,Y,101)

ANSQ=DDOTQ(X,Y,101)

WRITE(6,901) ANS,ANSQ

901 FORMAT(’DDOT finds ’,1PD23.16/

; ’DDOTQ finds ’,1PD23.16)

STOP

END

The program manufactures the following problem.

x = [108, 1, 2, 3, . . . , 100]

y = [108, 1, 1

2
, 1

3
, . . . , 1

100
]

x
⊤

y = 1016 + (1× 1) + (2 × 1

2
) + (3 × 1

3
) + · · ·+ (100× 1

100
) = 10000000000000100

When the program is compiled with gfortran and run, it produces the following out-
put. The product of the first two terms, 1016, is big enough so that the subsequent terms
contribute nothing to the sum when DDOT does the calculation using REAL*8 arithmetic.
However, when DDOTQ does the calculation using extra-precision accumulation the correct
result is obtained.

unix[1] a.out

DDOT finds 1.0000000000000000D+16

DDOTQ finds 1.0000000000000100D+16

unix[2]

This chapter has introduced two-part values, which can be used to perform fixed-point
arithmetic with numbers too big to store in an INTEGER*4, and extra-precision accumu-
lation for computing floating-point dot products more precisely than we can by simply
doing REAL*8 arithmetic. It is also possible to use Classical Fortran for integer cal-
culations of arbitrary precision, as described for example in [12, §20.6], and for floating-
point calculations of arbitrary precision by invoking Brent’s multiple precision package (see
https://maths-people.anu.edu.au/~brent/pub/pub043.html).

7

1 FUNCTION DDOTQ(X,Y,N)

2 C This routine computes the dot product of X with Y,

3 C using extra-precision accumulation.

4 C

5 C variable meaning

6 C -------- -------

7 C J index on the elements of X and Y

8 C MPYACC routine does extra-precision multiply and accumulate

9 C N number of elements in X and Y

10 C X one of the vectors in the dot product

11 C XYSUM extra-precision result

12 C Y the other vector in the dot product

13 C

14 C formal parameters

15 REAL*8 DDOTQ,X(N),Y(N)

16 C

17 C local variable

18 REAL*8 XYSUM(2)

19 C

20 C --

21 C

22 C check for a sensible value of N

23 DDOTQ=0.D0

24 IF(N.LE.0) RETURN

25 C

26 C accumulate the product at extended precision

27 XYSUM(1)=0.D0

28 XYSUM(2)=0.D0

29 DO 1 J=1,N

30 CALL MPYACC(X(J),Y(J), XYSUM)

31 1 CONTINUE

32 C

33 C return a double-precision answer

34 DDOTQ=XYSUM(1)+XYSUM(2)

35 RETURN

36 END

[201] Stokes, H. H., “The sensitivity of econometric results to alternative implementa-
tions of least squares,” Journal of Economic and Social Measurement 30 (2005) 9-38. In

the source code of Stokes’ B34S program, this approach to implementing the extra precision

accumulation idea is attributed to “1980 IMSL code that is no longer supported.”

[202]Muller, Jean-Michel; Brisebarre, Nicolas; de Dinechin, Florent; Jeannerod,
Claude-Pierre; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Stehlé,
Damien; and Torres, Serge, Handbook of Floating-Point Arithmetic, Birkhäuser, 2010.

Copyright c© 2023 Michael Kupferschmid, all rights reserved.

This supplementary textbook Section is licensed under cc-by 4.0.

Anyone who complies with the terms specified in

https://creativecommons.org/licenses/by/4.0/legalcode.txt

may use the work in the ways therein permitted.

1

18.5+ Generating Pseudorandom Numbers

Some scientific and engineering calculations are best performed by means of simulation

[53, §13] in which random trials are used to approximate the solution of a deterministic
problem or the random behavior of a real system is modeled by a computer program. Either
sort of simulation requires a sequence of numbers that appear to be random. Among the
many algorithms that have been proposed for generating such a pseudorandom sequence,
the mixed congruential algorithm

xk = (axk−1 + b) mod 231

[9, §3] is the most widely used. It is simple enough to provide a nice example of Fortran
programming and it is interesting because of the trivial way in which its modulus operation
can be performed, so it makes an appearance in Exercises 4.10.48, 6.8.20, and 8.8.20 of this
book. You might wish to reread the first of those now.
Depending on the numbers chosen for a and b the mixed congruential algorithm can

generate up to 231 numbers before the sequence begins to repeat, but some simulations use
more. The generalized shift register algorithm

xk = xk−147 ⊕ xk−250

[53, §13.3] [203], in which ⊕ denotes the bitwise xor operation (see §4.6.3), generates
2250−1 values before it repeats. It requires that we remember the previous 250 numbers
that have been generated, which makes it also interesting but not so simple as the mixed
congruential algorithm. To see how this algorithm can be implemented, imagine that we
have already filled the circular shift register S pictured below with 250 randomly-generated
seeds s1. . .s250, five of which are shown. If we let xk−147 = s148−k and xk−250 = s251−k

then we can compute x1 = s147 ⊕ s250 as shown.

S

s1 s250 s249

s147
s146

+

x
k
−
2
5
0

x
k
−

1
4
7

xk

x1

2

Then we can remember x1 by using it to replace s250, and compute x2 = s146 ⊕ s249 as
illustrated below.

S

s1 s250 s249

s147
s146

+

x
k
−
2
5
0

x
k
−

1
4
7

xk

x1 x2

The vectors pointing from xk−250 and xk−147 to the exclusive-or symbol at the center of
the circle rotate clockwise together as successive xk are produced, through k = 147 when
148− k = 1, 251− k = 104, and x147 = s1 ⊕ s104. To find x148 the vectors rotate one more
element clockwise as shown below, so x148 = s0 ⊕ s105 = s250 ⊕ s105.

S

s1 s250 s249

+

x
k
−
1
4
7

s105

x k
−

2
5
0

xk

x1 x2
. . . x148

3

Here is a pseudocode description of the process pictured above, in which I have assumed
that n numbers are to be generated.

initialize pointers

km250=251

km147=148

do k=1,n

rotate the vectors one element clockwise

km250=km250-1

if(km250=0) km250=250

km147=km147-1

if(km147=0) km147=250

compute the result
x(k)=s(km250) ⊕ s(km147)

and save it in the shift register for use later

s(km250)=x(k)

enddo

The variable km250 represents k−250 and km147 represents k−147. The first pass of the
loop decrements these pointers to have the values 250 and 147 respectively and computes
x1 = s250 ⊕ s147, the second pass of the loop makes km250=249 and km147=146 and computes
x2 = s249 ⊕ s146, and so on. Each time a seed s(km250) is used to compute a new xk it is
replaced by that new value. Eventually decrementing km147 gives it a value of zero, but as
shown in the third diagram above the element of S that should enter the calculation is not
s0 but s250 (in which we stored the previous value we calculated for x1) so km147 is reset
to 250. When the vector pointing from xk−250 rotates past s1 to s0 the variable km250 is
similarly reset from 0 to 250. You should convince yourself that the loop in this pseudocode
faithfully describes the rotation of the vectors in the pictures shown above and thus the
calculation of the successive xk.
To be useful in a simulation the pseudorandom values we generate must be floating-point

numbers uniformly distributed on the closed interval from 0 to 1. Sequences generated using
the generalized shift register algorithm have been shown [203, pp519-523] to be statistically
indistinguishable from those drawn from a uniform distribution, but making our Fortran
implementation of the algorithm produce REAL*8 numbers in the right range entails several
complications.
First, the built-in Fortran function IEOR discussed in §4.6.3 operates on bitstrings that

are stored in INTEGER*4 variables. To generate one REAL*8 number we must xor two pairs

of INTEGER*4 numbers and store the two-word result in the same memory occupied by the
REAL*8 we want.
Second, the magnitude of the REAL*8 is determined by its most significant 12 bits, which

represent its sign and exponent. Recall from §4.2 that the value of such a number is

r = (−1)s × 2p−1023 × (1 + f)

where s is the sign bit, p is the exponent represented by the next 11 bits, and f is the binary
fraction. The bits of f should be randomly generated, but for r not to exceed 1 we must
set s = 0 and p = 1023 in each number we generate and subtract 1 from the result.
Third, because we will be manipulating the bits of the floating-point number represen-

tation, we must pay attention to the order in which the bytes are stored. Recall from §4.8
that on a little-endian processor it is the most-significant byte of a number that is stored
at the lowest address.

4

The subroutine DR250 listed on the next two pages takes account of all these considera-
tions. The internal shift register ISR is initialized at compile time with seeds 49-298 that
are suitable for many applications.
If the routine is invoked with N > 0 the contents of the shift register are used 305-325

to generate N random numbers in X. The DO 2 loop is a practical version of the idealized
pseudocode given above. Each iteration of the loop generates 321-322 two INTEGER*4

bitstrings IX(1) and IX(2), which 45 occupy the same memory as the REAL*8 quantity

XK and are thus the two halves of that doubleword; subtracting 1.D0 from it 323 yields
the normalized result X(K). This code is intended for a little-endian processor (such as
those in the Intel Pentium family 320) so IX(1) and IX(2) are respectively JX(2) and
JX(1); to revise it for a big-endian processor it is necessary only to make these assignment
statements not reverse the order of the words. The fullwords JX(1) and JX(2) are made
318-319 from the adjacent shift register elements ISR(2*KM250-1) and ISR(2*KM250),
which together make up the doubleword that we called s(km250) in the pseudocode. JX(2)
is just the second half of the doubleword 319 but the first half of the doubleword needs to
begin with the bit pattern for a REAL*8 number that is in the interval [0, 1]; this is achieved
318 by or-ing the fullword with the bit pattern in MASKC 42 . The updating of s(km250)

indicated in the pseudocode is accomplished here by (very fast) IEOR operations 314-315

on the ISR elements. When DR250 is used in this way it returns with N unchanged.
If the routine is invoked with N ≤ 0 the shift register is reloaded 339-354 with values

obtained using the particular mixed congruential algorithm described in [5, §10.1], and X

is left unchanged. Each iteration of the DO 4 loop performs the calculations of the mixed
congruential algorithm for the first 342-344 and then the second 347-349 fullword of
that element in the shift register. Each result is and-ed with MASKZ to zero its high-order
bit, making it a positive integer; the high-order word is first and-ed with MASKX to set its
characteristic to zero so that the REAL*8 value of which it is a part will be in the range
[0, 1]. After DR250 is invoked in this way to reload the internal shift register, it can then be
called a second time with N > 0 to generate a random vector X (see its man page).
If N < 0 on input the starting value used for the reloading process is 329 |N| and on

return N contains 351 the negative of the final value resulting from the reloading process.

If N = 0 on input, the starting value for the reloading process is obtained 331-336

from the time-of-day clock and on return N contains the negative of that value. First
331 GETIMEOFDAY (see §18.5.3) obtains the two-part value TOD containing the seconds
and microseconds elapsed since midnight. Each of these is used as the starting value for
one iteration 332-333 of the mixed congruential algorithm. Then N is found 334 as
their exclusive-or. This sequence of operations reliably produces a large integer having an
irregular bit pattern; to ensure that it is negative and nonzero, the result is or-ed 335

with NODD 36 .
The long repetition period and high execution speed of DR250 make it suitable for many

large simulations.

[203] Kirkpatrick, Scott. and Stoll, Erich P., “A Very Fast Shift-Register Sequence
Random Number Generator,” Journal of Computational Physics 40 (1981) 517-526.

Copyright c© 2024 Michael Kupferschmid, all rights reserved.

This supplementary textbook Section is licensed under cc-by 4.0.

Anyone who complies with the terms specified in

https://creativecommons.org/licenses/by/4.0/legalcode.txt

may use the work in the ways therein permitted.

5

1 SUBROUTINE DR250(N,X)

2 C This routine generates a vector X of N normalized

3 C double-precision pseudorandom numbers in the interval [0,1]

4 C

5 C variable meaning

6 C -------- -------

7 C A multiplier for mixed congruential algorithm

8 C C increment for mixed congruential algorithm

9 C GETIMEOFDAY unix routine returns time of day and time zone

10 C IABS Fortran function gives |INTEGER*4|

11 C IAND Fortran function gives bitwise AND of fullwords

12 C IEOR Fortran function gives bitwise XOR of fullwords

13 C IOR Fortran function gives bitwise OR of fullwords

14 C ISR internal shift register

15 C IX a doubleword of X as 2 singlewords

16 C JX IX with the words switched

17 C K index on random numbers generated

18 C KM147 index in ISR of doubleword K-147

19 C KM250 index in ISR of doubleword K-250

20 C MASKC to set characteristic of ISR values generated

21 C MASKX to zero characteristic of ISR values generated

22 C MASKZ to zero the high-order bit of a word

23 C N number of random values needed, or seed (see above)

24 C NODD to make SEED end-bits ones

25 C TOD time-of-day [seconds,microseconds]

26 C SEED seed used for mixed congruential algorithm

27 C SET T => N has been set to -SEED for return

28 C X vector of random values returned

29 C XK a doubleword of X

30 C ZONE unused; for GETIMEOFDAY

31 C

32 C formal parameter

33 REAL*8 X(N)

34 C

35 C prepare to seed the generator

36 INTEGER*4 SEED,TOD(2),ZONE(2),NODD/Z’80000001’/

37 INTEGER*4 A/843314861/,C/453816693/

38 INTEGER*4 MASKZ/Z’7FFFFFFF’/,MASKX/Z’000FFFFF’/

39 LOGICAL*4 SET

40 C

41 C prepare to run the generator

42 INTEGER*4 KM250/251/,KM147/148/,MASKC/Z’3FF00000’/

43 REAL*8 XK

44 INTEGER*4 IX(2),JX(2)

45 EQUIVALENCE(XK,IX(1))

46 C

47 C internal shift register with values from SEED=123457

48 INTEGER*4 ISR(500)/

49 ; Z’0007E8AF’,Z’D4C00D62’,

248 lines of data

298 ; Z’0003731D’,Z’8AD80548’/

299 C

300 C --

301 C

6

302 C is this an initialization call?

303 IF(N.LE.0) GO TO 1

304 C

305 C generate N new random numbers while reseeding the generator

306 DO 2 K=1,N

307 C find the indices in ISR of X(K-250) and X(K-147)

308 KM250=KM250-1

309 IF(KM250.LE.0) KM250=250

310 KM147=KM147-1

311 IF(KM147.LE.0) KM147=250

312 C

313 C exclusive-or the singlewords

314 ISR(2*KM250)=IEOR(ISR(2*KM250),ISR(2*KM147))

315 ISR(2*KM250-1)=IEOR(ISR(2*KM250-1),ISR(2*KM147-1))

316 C

317 C extract the resulting doubleword

318 JX(1)=IOR(ISR(2*KM250-1),MASKC)

319 JX(2)=ISR(2*KM250)

320 C the word order is reversed in the Pentium

321 IX(1)=JX(2)

322 IX(2)=JX(1)

323 X(K)=XK-1.D0

324 2 CONTINUE

325 RETURN

326 C

327 C get a seed to use in the reloading process

328 1 SET=.FALSE.

329 SEED=IABS(N)

330 IF(SEED.GT.0) GO TO 3

331 CALL GETIMEOFDAY(TOD,ZONE)

332 TOD(1)=A*TOD(1)+C

333 TOD(2)=A*TOD(2)+C

334 N=IEOR(TOD(1),TOD(2))

335 N=IOR(N,NODD)

336 SEED=-N

337 SET=.TRUE.

338 C

339 C reload the ISR using a mixed congruential algorithm

340 3 DO 4 K=1,250

341 C low-order word of the 8-byte value

342 SEED=A*SEED+C

343 ISR(2*K)=SEED

344 SEED=IAND(SEED,MASKZ)

345 C

346 C high-order word of the 8-byte value

347 SEED=A*SEED+C

348 ISR(2*K-1)=IAND(SEED,MASKX)

349 SEED=IAND(SEED,MASKZ)

350 4 CONTINUE

351 IF(.NOT.SET) N=-SEED

352 KM250=251

353 KM147=148

354 RETURN

355 END

